PENGARUH SELEKSI PEGAWAI DAN KOMPENSASI TERHADAP KINERJA PEGAWAI PADA PT. PRICOL SURYA INDONESIA
DOI:
https://doi.org/10.51977/jsm.v4i1.666Keywords:
Employee Selection, Compensation, Employee PerformanceAbstract
The population used in this study were employees of PT. Pricol Surya Indonesia-Karawang as many as 150 employees. The sample in this study were 110 respondents. The type of data in this study is Likert. The method of collecting data through a questionnaire. The research method used is a quantitative method.The results of the study to prove the influence of the organization on employee performance based on the results of the value test obtained by the calculated value of 4.504 and the effect of compensation on employee performance based on the test results obtained from this value of 9.076 with a significance value of 0.000, it can be ignored that employee selection and compensation have a significant effect. Against Employee Performance. Meanwhile, the influence of organization and compensation on employee performance based on the results of the f test obtained the calculated F value of 121,328 and the significance probability value of 0,000 and the ? level of 5%. This shows that the results of the F test significance 0.000 smaller give a significance value of 0.05. This means that Employee Selection (X1) and Compensation (X2) simultaneously have a significant effect on employee performance.
References
Amelia, N. (2020). No Title. Unair News. http://news.unair.ac.id/2020/01/31/mengenal-perkembangan-jenis-baru-virus-corona-yang-infeksi-ribuan-orang/
Cahyadi, R., Damayanti, A., & Aryadani, D. (2020). Recurrent neural network (rnn) dengan long short term memory (lstm) untuk analisis sentimen data instagram. 5, 1–9.
Faturohman, F., Irawan, B., Setianingsih, C., Elektro, F. T., & Telkom, U. (2020). ANALISIS SENTIMEN PADA BPJS KESEHATAN MENGGUNAKAN RECURRENT NEURAL NETWORK SENTIMENT ANALYSIS ON BPJS KESEHATAN USING RECURRENT NEURAL. 7(2), 4545–4552.
Kasmad. (2020). Covid 19 dan Penyebarannya.
Khatami, F. A., Irawan, B., Si, S., & Setianingsih, C. (2020). ANALISIS SENTIMEN TERHADAP REVIEW APLIKASI LAYANAN E-COMMERCE MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK SENTIMENT ANALYSIS OF E-COMMERCE APPLICATION REVIEWS USING THE CONVOLUTIONAL NEURAL NETWORK METHOD. 7(2), 4559–4566.
Mardiana, T., Syahreva, H., Informasi, S., Bina, U., & Informatika, S. (2019). KOMPARASI METODE KLASIFIKASI PADA ANALISIS SENTIMEN USAHA. 15(2), 267–274. https://doi.org/10.33480/pilar.v15i2.752
Nemes, L., & Kiss, A. (2021). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), 1–15. https://doi.org/10.1080/24751839.2020.1790793
Pertiwi, Wi. M. (2019). ANALISIS SENTIMEN OPINI PUBLIK MENGENAI SARANA DAN TRANSPORTASI MUDIK TAHUN 2019 PADA TWITTER MENGGUNAKAN ALGORITMA NAÏVE BAYES, NEURAL NETWORK, KNN DAN SVM. 14(1), 27–32.
Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. Jurnal Media Informatika Budidarma, 5, 157–163. https://doi.org/10.30865/mib.v5i1.2604
Zulfa, I., & Winarko, E. (2017). Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(2), 187. https://doi.org/10.22146/ijccs.24716