PENERAPAN PSO PADA NAÏVE BAYES UNTUK PREDIKSI HARAPAN HIDUP PASIEN GAGAL JANTUNG

##plugins.themes.academic_pro.article.main##

Firza Novaldy
Asti Herliana

Abstract

Gagal jantung merupakan masalah kesehatan yang progresif dengan angka mortalitas dan morbiditas yang tinggi di negara maju maupun negara berkembang termasuk Indonesia. Pada tahun 2016, WHO menyebutkan 17,5 juta orang meninggal akibat penyakit kardiovaskular sedangkan pada tahun 2008, penyakit ini mewakili dari 31% kematian di dunia. Perkiraan akurat dari prognosis gagal jantung sangat penting bagi layanan kesehatan untuk memungkinkan alokasi sumber daya yang tepat kepada dokter dalam membuat keputusan untuk manajemen dan kepada pasien untuk memungkinkan pilihan informasi tentang perawatan dan perawatan akhir kehidupan. Sehingga pada penelitian kali ini dilakukan penerapan metode optimasi Particle Swarm Optimization (PSO) pada algoritma Naïve Bayes sebagai seleksi fitur, yang bertujuan untuk mengetahui nilai akurasi yang dihasilkan oleh algoritma Naïve Bayes dan peran optimasi PSO untuk meningkatkan nilai akurasi dari hasil prediksi harapan hidup pasien gagal jantung. Setelah dilakukan pengujian menggunakan aplikasi Rapidminer dapat diketahui bahwa hasil klasifikasi menggunakan optimasi metode PSO yang mendukung metode  Naive Bayes dapat menghasilkan nilai akurasi yang lebih baik, yaitu sebesar 92.67% dan nilai Area Under ROC (AUC) sebesar 0.908. Hasil akurasi yang didapat pada penelitian kali ini termasuk kedalam kategori Excellent Classification.

##plugins.themes.academic_pro.article.details##

References

Ariesta, D., & Arifin, T. (2019). Prediksi Penyakit Ginjal Kronis Menggunakan Naïve Bayes Classifier Berbasis Particle Swarm Optimization. Jurnal Tekno Insentif, 13, 26–30. https://doi.org/10.36787/jti.v13i1.97
Arifin, T., & Syalwah, S. (2020). Prediksi Keberhasilan Immunotherapy Pada Penyakit Kutil Dengan Menggunakan Algoritma Naïve Bayes. Jurnal Responsif, 2(1), 38–43.
Astuti, D. P. T., & Suardamana, I. K. (2017). Gagal jantung. Universitas Udayana, 1–2.
Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(1), 1–16. https://doi.org/10.1186/s12911-020-1023-5
Fikriana, R. (2018). Sistem Kardiovaskuler (Cetakan 1, Issue Juni). deepublish.
Herliana, A., Arifin, T., Susanti, S., & Hikmah, A. B. "Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network," 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 2018, pp. 1-4, doi: 10.1109/CITSM.2018.8674295.
Herliana, A., Setiawan, V. A., & Prasetio, R. T. (2018). Penerapan Inferensi Backward Chaining Pada Sistem Pakar Diagnosa Awal Penyakit Tulang. Jurnal Informatika, 5(1), 50-60.
Koeswara, T. S. N., Mardiyanto, M. S., & Ghani, M. A. (2020). Penerapan Particle Swarm Optimization (Pso) Dalam Pemilihan Atribut Untuk Meningkatkan Akurasi Prediksi Diagnosispenyakit Hepatitis Dengan Metode Naive Bayes. Journal Speed – Sentra Penelitian Engineering Dan Edukasi, 12(1), 1–10.
Mutiara, E. (2020). Algoritma Klasifikasi Naive Bayes Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Tuberculosis ( TB ). 8(1), 46–58.
Prasetio, R. T., & Riana, D. (2015, November). A comparison of classification methods in vertebral column disorder with the application of genetic algorithm and bagging. In 2015 4th international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME) (pp. 163-168). IEEE.
Prasetio, R. T., & Pratiwi, P. (2015). PENERAPAN TEKNIK BAGGING PADA ALGORITMA KLASIFIKASI UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS DATASET MEDIS. Jurnal Informatika, 2(2).
Prasetio, R. T. (2014). Inventory Control Using Statistics Forecasting on Manufacture Company. Jurnal Informatika, 1(2).
Prasetio, R. T., & Ripandi, E. (2019). Optimasi Klasifikasi Jenis Hutan Menggunakan Deep Learning Berbasis Optimize Selection. Jurnal Informatika, 6(1), 100-106.
Prasetio, R. T., Rismayadi, A. A., & Anshori, I. F. (2018). Implementasi Algoritma Genetika pada k-nearest neighbours untuk Klasifikasi Kerusakan Tulang Belakang. Jurnal Informatika, 5(2), 186-194.
Prasetio, R. T., & Susanti, S. (2019). Prediksi Harapan Hidup Pasien Kanker Paru Pasca Operasi Bedah Toraks Menggunakan Boosted k-Nearest Neighbor. JURNAL RESPONSIF: Riset Sains & Informatika, 1(1), 64-69.
Prasetio, R. T. (2020). SELEKSI FITUR DAN OPTIMASI PARAMETER k-NN BERBASIS ALGORITMA GENETIKA PADA DATASET MEDIS. Jurnal Responsif: Riset Sains & Informatika, 2(2), 213-221.
Prasetio, R. T. (2020). Genetic Algorithm to Optimize k-Nearest Neighbor Parameter for Benchmarked Medical Datasets Classification. Jurnal Online Informatika, 5(2), 153-160.
Prasetio, R. T., Rismayadi, A. A., Suryana, N., & Setiady, R. (2020). Features Selection and k-NN Parameters Optimization based on Genetic Algorithm for Medical Datasets Classification. Heart Disease (SPECTF), 267(44), 2.
Riana, D., Ramdhani, Y., Prasetio, R. T., & Hidayanto, A. N. (2018). Improving Hierarchical Decision Approach for Single Image Classification of Pap Smear. International Journal of Electrical and Computer Engineering (IJECE), 8(6), 5415–5424. https://doi.org/10.11591/ijece.v8i6.pp5415-5424
Ramdhani, Y., Mubarok, A., Hidayatulloh, S., & Wiguna, W. (2020). Attribute Optimization: Genetic Algorithms and Neural Network for Voice Analysis Classification of Parkinson's Disease.
Ramdhani, Y., & Mubarok, A. (2019). Analisis Time Series Prediksi Penutupan Harga Saham Antm. Jk Dengan Algoritma SVM Model Regresi. Jurnal Responsif: Riset Sains & Informatika, 1(1), 77-82.
Ramdhani, Y., Susanti, S., Adiwisastra, M. F., & Topiq, S. (2018). Penerapan Algoritma Neural Network Untuk Klasifikasi Kardiotokografi.
Ramdhani, Y., & Riana, D. (2017, November). Hierarchical Decision Approach based on Neural Network and Genetic Algorithm method for single image classification of Pap smear. In 2017 Second International Conference on Informatics and Computing (ICIC) (pp. 1-6). IEEE.
Ramdhani, Y. (2015). Komparasi Algoritma LDA Dan Naïve Bayes Dengan Optimasi Fitur Untuk Klasifikasi Citra Tunggal Pap Smear. Jurnal Informatika, 2(2).
Siswanto, B. B., Hersunarti, N., Erwinanto, R. B., Pratikto, R. S., Nauli, S. E., & Lubis, A. C. (2015). Pedoman Tatalaksana Gagal Jantung (Edisi Pert). PERKI.
Triprasojo, A., Mauliana, P., & Wiguna, W. (2019). Penerapan Algoritma Naive Bayes Untuk Klasifikasi Deteksi Mesothelioma. JURNAL INFORMATIKA, 1–8.