ANALISIS LOWONGAN PEKERJAAN DI BIDANG TEKNOLOGI INFORMASI BERDASARKAN LOKASI MENGGUNAKAN TEKNIK KLASTERING K – MEANS

##plugins.themes.academic_pro.article.main##

Hendy Djaya Siswaja
Rizki Tri Prasetio

Abstract

This study analyzes job vacancy distribution in the Technology Information sector based on location using the K-Means clustering technique. In the current era of Industry 4.0, job seekers and employers face challenges with data overload and time-consuming recruitment processes. Identifying hidden patterns in job vacancy data is crucial to understanding the concentration of job opportunities across regions. The methodology involves data preprocessing, including data cleaning, transformation, and normalization, followed by clustering using K-Means and evaluation with the Davies-Bouldin Index (DBI) to determine optimal clustering. The results reveal that clustering with 6 groups provides the most meaningful separation of job vacancies based on location and category, with a significant dominance of one cluster. The findings suggest that more detailed analysis of smaller clusters could uncover niche opportunities. This approach can assist policymakers and job seekers in making more informed decisions regarding career opportunities.

##plugins.themes.academic_pro.article.details##

References

1. Mhamdi D, Moulouki R, El Ghoumari MY, Azzouazi M, Moussaid L. Job recommendation based on job profile clustering and job seeker behavior. Procedia Comput Sci. 2020;175:695–9.
2. Agustyani EM, Santoso I. Analisis Lowongan Pekerjaan Studi Kasus: Portal Lowongan Kerja Jobstreet. Dalam: Seminar Nasional Official Statistics. 2019. hlm. 1–10.
3. Asriyanik A. Pengelompokan Data Pelamar Kerja Menggunakan Algoritma K-Means Clustering pada SMK Negeri 1 Kota Sukabumi. Dalam: SEMINAR NASIONAL APTIKOM (SEMNASTIK) 2019. 2019. hlm. 1–6.
4. Nugroho JR, Suprapto YK, Setijadi E. Clustering Tingkat Risiko Klasifikasi Lapangan Usaha (KLU) Menggunakan Metode K-Means. Jurnal Teknologi Informasi dan Ilmu Komputer. 2022;9(3):533–40.
5. Annas S, Poerwanto B, Sapriani S. Implementation of k-means clustering on poverty indicators in indonesia. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer. 2022;21(2):257–66.
6. Firdaus GAA, Wulandhari LA. Company clustering based on financial report data using k-means. Computer Science and Information Technologies. 2024;5(3):243–53.
7. Sukamto AS, Setiawan W, Pratama EE. Data Mining untuk Pengelompokan Saham pada Sektor Energi dengan Metode K-Means. JEPIN (Jurnal Edukasi dan Penelitian Informatika). 2023;9(1):76–81.
8. Nugroho AA, Paduloh P. Analisis Clustering Kasus Covid–19 di Indonesia Menggunakan Algoritma K-Means. Journal of Engineering Environtmental Energy and Science. 2023;2(2):111–8.
9. Sopyan Y, Lesmana AD, Juliane C. Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan. Building of Informatics, Technology and Science (BITS). 2022;4(3):1464–70.
10. Indriyani F, Irfiani E. Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika. 2019;7(2):109–13.
11. Umagapi IT, Umaternate B, Hazriani H, Yuyun Y. Uji Kinerja K-Means Clustering Menggunakan Davies-Bouldin Index Pada Pengelompokan Data Prestasi Siswa. Prosiding Sisfotek. 2023;7(1):303–8.