PENDEKATAN ALGORITMA NEURAL NETWORK DAN GENETIC ALGORITHM UNTUK PREDIKSI PENYAKIT GINJAL KRONIS
##plugins.themes.academic_pro.article.main##
Abstract
Penyakit ginjal kronis (PGK) merupakan masalah kesehatan masyarakat global yang mempengaruhi sekitar 10% dari populasi dunia. Persentase prevalensi PGK di China adalah 10,8%, dan rentang prevalensinya adalah 10%-15% di Amerika Serikat. Seiring dengan perkembangan Artificial Intelligence (AI) dimana Machine Learning (ML) merupakan subbagian dari AI, penelitian ini mencoba memanfaatkan algoritma Neural Network, optimasi data berbasis Genetic Algorithm, dan k-fold Cross Validation dengan nilai k berkelipatan 10, yaitu 10, 20, 30, 40, dan 50 untuk memprediksi apakah seorang pasien mengidap PGK atau tidak dari dataset yang berisi hasil uji klinis pasien tersebut. Hasil penelitian ini mengungkapkan bahwa algoritma Neural Network dengan optimasi data berbasis GA mampu memperoleh tingkat akurasi sampai dengan 98,75% dan nilai AUC sebesar 0,999 sehingga dapat disimpulkan bahwa algoritma Neural Network dengan optimasi berbasis GA ini dapat dikembangkan lebih lanjut menjadi sebuah aplikasi ataupun bagian dari sistem kesehatan sehingga tingkat diagnosa pasien yang mengidap PGK dapat lebih cepat dilakukan dengan tingkat akurasi yang tinggi dan dapat meningkatkan peluang kesembuhan bagi pasien tersebut.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Pemberitahuan Hak Cipta
Usulan kebijakan untuk jurnal yang menawarkan akses terbuka Syarat yang dibutuhkan penulis adalah sebagai berikut:
1. Penulis memegang hak cipta dan memberikan jurnal hak penerbitan pertama secara bersamaan di bawah lisensi di bawah Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0), yang mengizinkan orang lain untuk menyalin dan mendistribusikan ulang materi ini dalam bentuk atau format apa pun termasuk menyusun, memodifikasi, dan membuat turunan materi ini untuk tujuan apa pun, termasuk tujuan komersial.
2. Penulis dapat membuat pengaturan kontrak terpisah untuk distribusi non-eksklusif dari versi dekaden publikasi jurnal (misalnya mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan mengakui publikasi aslinya di jurnal ini.
3. Penulis diizinkan dan didorong untuk memposting artikel secara online (misalnya di repositori institusional atau di situs web mereka) seperti pada Garuda, Academia, researchgate atau repository lainnya sebelum dan selama proses pengiriman, karena dapat menghasilkan pertukaran yang produktif dan kutipan artikel yang diterbitkan lebih awal dan lebih maju (periksa: Efek Akses Terbuka)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Almansour, N. A., Syed, H. F., Khayat, N. R., Altheeb, R. K., Juri, R. E., Alhiyafi, J., Alrashed, S., & Olatunji, S. O. (2019). Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Computers in Biology and Medicine, 109, 101–111.
Bai, Q., Su, C., Tang, W., & Li, Y. (2022). Machine learning to predict end stage kidney disease in chronic kidney disease. Scientific Reports, 12(1), 8377.
Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., Jasiński, M., Jasiński, Ł., Gono, R., & Jasińska, E. (2021). Prediction of chronic kidney disease-a machine learning perspective. IEEE Access, 9, 17312–17334.
Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189–194.
Hore, S., Chatterjee, S., Shaw, R. K., Dey, N., & Virmani, J. (2018). Detection of chronic kidney disease: A NN-GA-based approach. Nature Inspired Computing: Proceedings of CSI 2015, 109–115.
Japkowicz, N. (2006). Why question machine learning evaluation methods. AAAI Workshop on Evaluation Methods for Machine Learning, 6(11).
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.
Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: a better measure than accuracy in comparing learning algorithms. Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational Studies of Intelligence, AI 2003, Halifax, Canada, June 11–13, 2003, Proceedings 16, 329–341.
Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. (2019). Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22(4), 407–411.
Nishat, M. M., Faisal, F., Dip, R. R., Nasrullah, S. M., Ahsan, R., Shikder, F., Asif, M. A.-A.-R., & Hoque, M. A. (2021). A comprehensive analysis on detecting chronic kidney disease by employing machine learning algorithms. EAI Endorsed Transactions on Pervasive Health and Technology, 7(29), e1–e1.
Połap, D. (2020). An adaptive genetic algorithm as a supporting mechanism for microscopy image analysis in a cascade of convolution neural networks. Applied Soft Computing, 97, 106824.
Qezelbash-Chamak, J., Badamchizadeh, S., Eshghi, K., & Asadi, Y. (2022). A survey of machine learning in kidney disease diagnosis. Machine Learning with Applications, 10, 100418.
Qin, J., Chen, L., Liu, Y., Liu, C., Feng, C., & Chen, B. (2019). A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 8, 20991–21002.
Renear, A. H., Sacchi, S., & Wickett, K. M. (2010). Definitions of dataset in the scientific and technical literature. Proceedings of the American Society for Information Science and Technology, 47(1), 1–4.
Seraj, A., Mohammadi-Khanaposhtani, M., Daneshfar, R., Naseri, M., Esmaeili, M., Baghban, A., Habibzadeh, S., & Eslamian, S. (2023). Cross-validation. In Handbook of Hydroinformatics (pp. 89–105). Elsevier.
Sil, A., Betkerur, J., & Das, N. K. (2019). P-value demystified. Indian Dermatology Online Journal, 10(6), 745–750.
Singh, V., Asari, V. K., & Rajasekaran, R. (2022). A deep neural network for early detection and prediction of chronic kidney disease. Diagnostics, 12(1), 116.